Новости науки "Русского переплета" Rambler's Top100
Портал | Содержание | О нас | Пишите | Новости | Книжная лавка | Голосование | Топ-лист | Регистрация | Дискуссия
Лучшие молодые
ученые России

Подписаться на новости

АВТОРСКИЕ НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах" | "Terra & Comp" (Геология и компьютеры) | "Неизбежность странного микромира"| "Научно-популярное ревю"| "Биология и жизнь" | Теорфизика для малышей
Семинары - Конференции - Симпозиумы - Конкурсы

НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"
Проект поддержан Международной Соросовской Программой образования в области точных наук.
Новости из мира науки и техники
The Best of Russian Science and Technology
Страницу курирует проф. В.М.Липунов
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

31.10.2019
15:48

Решена величайшая математическая задача для альтернативной Вселенной

    Американские математики решили одну из самых сложных проблем — гипотезу о существовании бесконечного числа простых чисел-близнецов. Однако доказать это предположение удалось только для частного случая: конечного поля, то есть множества, состоящего из ограниченного количества элементов. Как пишет издание Live Science, это аналогично математическому доказательству, сделанному в альтернативной Вселенной, где бесконечное множество чисел замкнуто само на себя подобно часовому циферблату.

    Исследователи воспользовались тем фактом, что элементы конечного поля образуют многочлены, как и обычные числа. Кроме того, известно, что утверждения, которые верны для целых чисел, верны и для многочленов конечного поля. Например, существуют пары простых чисел (числа-близнецы), отличающихся на 2 (например, 3 и 5, 11 и 13), и вместе с этим существуют пары многочленов конечного поля, также отличающиеся на определенное число.

    Многочленам соответствуют графики, поэтому математики обратились к геометрии, которая стала удобным инструментом для подтверждения гипотезы, что в конечных полях существует бесконечное количество парных многочленов. Однако вряд ли удастся доказать таким же образом гипотезу о существовании бесконечного количества чисел-близнецов, а также простых чисел, разница между которыми равна любому числу. По словам ученых, возможно, что гипотеза должна доказываться совсем по-другому.

    Простыми числами называют целые положительные числа (натуральные), которые делятся лишь на единицу и само себя.

    По информации https://lenta.ru/news/2019/10/30/universe/

    Обозрение "Terra & Comp".

Помощь корреспонденту
Кнопка куратора
Добавить новость
Добавить новости
НАУКА В "РУССКОМ ПЕРЕПЛЕТЕ"

Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Rambler's Top100