Портал | Содержание | О нас | Пишите | Новости | Голосование | Топ-лист | Дискуссия Rambler's Top100

TopList Яндекс цитирования

НОВОСТИ
"РУССКОГО ПЕРЕПЛЕТА"

ЛИТЕРАТУРА

Новости русской культуры

Афиша

К читателю

Содержание

Публицистика

"Курск"

Кавказ

Балканы

Проза

Поэзия

Драматургия

Искания и размышления

Критика

Сомнения и споры

Новые книги

У нас в гостях

Издательство

Книжная лавка

Журнальный зал

ОБОЗРЕНИЯ

"Классики и современники"

"Слово о..."

"Тайная история творений"

"Книга писем"

"Кошачий ящик"

"Золотые прииски"

"Сердитые стрелы"

КУЛЬТУРА

Афиша

Новые передвжиники

Фотогалерея

Музыка

"Неизвестные" музеи

Риторика

Русские храмы и монастыри

Видеоархив

ФИЛОСОФИЯ

Современная русская мысль

Искания и размышления

ИСТОРИЯ

История России

История в МГУ

Слово о полку Игореве

Хронология и парахронология

Астрономия и Хронология

Альмагест

Запечатленная Россия

Сталиниана

ФОРУМЫ

Дискуссионный клуб

Научный форум

Форум "Русская идея"

Форум "Курск"

Исторический форум

Детский форум

КЛУБЫ

Пятничные вечера

Клуб любителей творчества Достоевского

Клуб любителей творчества Гайто Газданова

Энциклопедия Андрея Платонова

Мастерская перевода

КОНКУРСЫ

За вклад в русскую культуру публикациями в Интернете

Литературный конкурс

Читательский конкурс

Илья-Премия

ДЕТЯМ

Электронные пампасы

Фантастика

Форум

АРХИВ

Текущий

2003

2002

2001

2000

1999

Фотоархив

Все фотоматериалы


Новости
"Русский переплет" зарегистрирован как СМИ. Свидетельство о регистрации в Министерстве печати РФ: Эл. #77-4362 от
5 февраля 2001 года. При полном или частичном использовании
материалов ссылка на www.pereplet.ru обязательна.

Тип запроса: "И" "Или"

12.04.2018
15:35

Найдена новая разновидность космических катастроф

12.04.2018
15:19

Структура Росатома создаст новое оборудование для изучения Луны и Марса

12.04.2018
14:06

"Выверт." - новое в литературном обозрении Соломона Воложина

11.04.2018
21:32

Ученые создали детальные динамические карты магнитного поля океанов и земной коры

11.04.2018
21:27

Количество аномально жарких дней в океане за последние 90 лет выросло в полтора раза

11.04.2018
21:23

Тепловые волны становятся все более частым явлением в Мировом океане

11.04.2018
21:20

Исследователи обнаружили в метеорите самую древнюю магнитную «запись» в солнечной системе

11.04.2018
21:16

Открыты четыре новых экзопланеты класса «горячих юпитеров»

11.04.2018
21:00

Страны ЕС договорились о сотрудничестве в области искусственного интеллекта

11.04.2018
20:55

Аудитория Рунета приблизилась к 90 млн пользователей

11.04.2018
19:02

В России заработала первая "народная" интернет-обсерватория

11.04.2018
18:58

Дюны в движении: NASA опубликовало новую фотографию Марса

11.04.2018
18:54

Спутники Swarm помогли построить динамические карты магнитного поля океанов и земной коры

11.04.2018
18:51

Машинное обучение помогло подобрать потенциал взаимодействия атомов бора

    Ученые из Великобритании и Японии разработали способ, который позволяет сравнительно быстро подобрать параметры потенциала взаимодействия атомов бора в различных кристаллических соединениях и значительно упрощает численное моделирование соединений. Для этого исследователи предложили обучать программу «на лету», постепенно подстраивая ее ближе к реальности. Статья опубликована в Physical Review Letters, препринт работы выложен на сайте arXiv.org.

    Наибольшим разнообразием аллотропных форм отличается углерод, однако элементарный бор также образует множество сложных соединений с различными свойствами. Такое неожиданное разнообразие объясняется «дефицитным» характером образуемых атомами бора связей (electron-deficient bonding nature). В самом деле, атом бора имеет всего три валентных электрона. Казалось бы, это ограничивает число его «соседей» тремя, поскольку для создания ковалентной связи каждая из сторон должна предоставить по одному электрону, а в кристаллическом боре дополнительные электроны брать неоткуда. Однако в действительности химические связи устроены немного сложнее. Оказывается, что если расположить на достаточно близком расстоянии атомы бора, у которых «заняты» все три электрона, они все равно свяжутся друг с другом, попеременно «заимствуя» и перераспределяя электроны из других связей. Такие связи называют двухэлектронными трехцентровыми, а само явление в целом — электронным дефицитом. Именно из-за электронного дефицита молекулы борана при нормальных условиях связываются в диборан.

    «Дефицитный» характер электронных связей в боре осложняет его численное моделирование и теоретический анализ. В частности, долгое время было непонятно, какая из аллотропных форм бора имеет наименьшее возможное энергетическое состояние — α-ромбоэдральный бор, который состоит исключительно их икосаэдров B12, или β-ромбоэдральный бор, в котором эта структура нарушается. Несмотря на то, что обычно для основного состояния свойственна бо́льшая симметрия, тщательное исследование с помощью численного моделирования и теории функционала плотности (density-functional theory, DFT) показало, что энергия β-ромбоэдрального бора все-таки меньше. Такую же большую роль метод DFT сыграл в исследовании свойств других аллотропных модификаций, например, борофена — аналога графена, в котором атомы углерода заменены на атомы бора.

    К сожалению, несмотря на свои успехи, метод DFT имеет и недостатки. Главный недостаток — это его высокая вычислительная сложность. Число вычислений можно было бы уменьшить, если бы ученые точно знали, как потенциал взаимодействия атомов бора зависит от их расстояния и положения, однако в настоящее время все приближения этого потенциала ограничиваются случаем α-ромбоэдрального бора. Не существует и эмпирических формул, которые корректно описывали бы поведение потенциала в различных аллотропных модификациях. Поэтому все численные моделирования соединений бора ограничиваются сравнительно небольшим числом частиц.

    Группа ученых под руководством Габора Цаны (Gábor Csányi) разработала метод, который позволяет значительно упростить вычисления; с его помощью исследователи нашли модификацию бора с наименьшей энергией и в подробностях изучили ее энергетическую структуру. Для этого ученые использовали метод машинного обучения «на лету» — обучали программу на заданной выборке кристаллических периодических соединений бора, заставляли ее генерировать новую выборку, в которой суммарная энергия соединений была меньше, и заново обучали программу на новой выборке. Обучение заключалось в подборе программой параметров гауссового потенциала, который использовался для расчета суммарной энергии соединения. Энергия при этом рассчитывалась с помощью метода DFT. Когда же подбор параметров на данном шаге завершался, ученые генерировали случайные соединения и минимизировали их энергию с помощью найденного потенциала, чтобы получить элементы новой выборки и перейти к следующей итерации.

    Эволюция выборок со временем: по оси x отложен средний объем, приходящийся на атом бора в структуре (то есть, фактически, обратная плотность упаковки), по оси y — энергия структуры. Желтыми точками отмечена исходная выборка, серыми — выборка, рассчитанная на пятом шаге, и синими — итоговая выборка после двухсот итераций. Для сравнения приведены параметры α-ромбоэдрального бора

    Изначальная выборка, «скормленная» программе на первом этапе, представляла собой набор структур с совершенно произвольным строением и, соответственно, с различной суммарной энергией. Тем не менее, буквально после нескольких первых шагов энергия генерируемых программой соединений быстро уменьшалась, а их структура стремилась к структуре α- и β-ромбоэдрального бора. После двухсот итераций исследователи прекращали процесс и смотрели на итоговые значения параметров потенциала. Затем ученые повторили его еще несколько раз, на самом последнем этапе выделяя различные кристаллические структуры и включая в рассмотрение возмущенные решетки реальных аллотропных модификаций бора. В результате авторы получили для каждой модификации бора свой потенциал, который довольно хорошо воспроизводил «честное» численное моделирование с помощью метода DFT. При этом наименьшая суммарная энергия соединений достигалась для кристаллических структур α- и β-ромбоэдрального бора.

    Наконец, ученые использовали полученные данные, чтобы подробнее исследовать локальную энергетическую структуру β-ромбоэдрального бора. Оказалось, что в наиболее симметричной β-B105-модели, в которой электронные оболочки «вершинных» атомов бора, расположенных поблизости от «изолированного» атома, заполнены полностью, локальная энергия «вершинных атомов» существенно превышает среднее по кристаллу значение. В то же время, в чуть менее симметричной β-B106-модели, в которой из шести электронных оболочек «вершинных» атомов заполнено пять, энергия атомов распределена более равномерно. Поскольку суммарная энергия обеих конфигураций практически одинакова, это значит, что на практике менее симметричная структура будет возникать с большей вероятностью.

    Численное моделирование широко применяется для исследования свойств химических соединений. Например, в январе этого года ученые из НИЯУ МИФИ численно смоделировали с помощью метода функционала плотности фуллерены, в которых несколько атомов углерода были заменены атомами азота, и рассчитали продолжительность их жизни. Оказалось, что время жизни соединения тем меньше, чем больше в нем содержится азота, однако при низких температурах эта разница сглаживается — в обоих случаях время так велико, что его можно положить бесконечности. А в сентябре прошлого года физики из Южного федерального университета нашли с помощью этого метода аллотропную форму алюминия, обладающую плотностью всего 0,61 грамма на сантиметр кубический. Также мы писали, как ученые применили машинное обучение для определения химических свойств сложных молекул, например бензола или этана.

    По информации https://nplus1.ru/news/2018/04/11/boron-potential

    Обозрение "Terra & Comp".

Выскажите свое мнение на:

11.04.2018
18:51

Машинное обучение помогло подобрать потенциал взаимодействия атомов бора

11.04.2018
18:46

Метаповерхность повернула звуковую волну без потерь энергии

11.04.2018
18:41

В Дубае протестируют электронные автомобильные номера

11.04.2018
18:39

Астрономы разглядели у молодых звезд разные по форме и структуре околозвездные диски

11.04.2018
18:35

Радиоизлучение пульсаров объяснили гравитационным расщеплением энергий электронов

11.04.2018
18:30

Американцы создали роящихся роботов-ныряльщиков

<< 1081|1082|1083|1084|1085|1086|1087|1088|1089|1090 >>

НАУКА

Новости

Научный форум

Почему молчит Вселенная?

Парниковая катастрофа

Хронология и парахронология

История и астрономия

Альмагест

Наука и культура

2000-2002
Научно-популярный журнал Урания в русском переплете
(1999-200)

Космические новости

Энциклопедия космонавтика

Энциклопедия "Естествознание"

Журнальный зал

Физматлит

News of Russian Science and Technology

Научные семинары

НАУЧНЫЕ ОБОЗРЕНИЯ

"Физические явления на небесах"

"TERRA & Comp"

"Неизбежность странного микромира"

"Биология и жизнь"

ОБРАЗОВАНИЕ

Открытое письмо министру образования

Антиреформа

Соросовский образовательный журнал

Биология

Науки о Земле

Математика и Механика

Технология

Физика

Химия

Русская литература

Научная лаборатория школьников

КОНКУРСЫ

Лучшие молодые
ученые России

Для молодых биологов

БИБЛИОТЕКИ

Библиотека Хроноса

Научпоп

РАДИО

Читают и поют авторы РП

ОТДЫХ

Музеи

Игры

Песни русского застолья

Народное

Смешное

О НАС

Редколлегия

Авторам

О журнале

Как читать журнал

Пишут о нас

Тираж

РЕСУРСЫ

Поиск

Проекты

Посещаемость

Журналы

Русские писатели и поэты

Избранное

Библиотеки

Фотоархив

ИНТЕРНЕТ

Топ-лист "Русского переплета"

Баннерная сеть

Наши баннеры

НОВОСТИ

Все

Новости русской культуры

Новости науки

Космические новости

Афиша

The best of Russian Science and Technology

 

 


Если Вы хотите стать нашим корреспондентом напишите lipunov@sai.msu.ru

 

Редколлегия | О журнале | Авторам | Архив | Ссылки | Статистика | Дискуссия

Галерея "Новые Передвижники"
Пишите

© 1999, 2000 "Русский переплет"
Дизайн - Алексей Комаров

Русский Переплет
Rambler's Top100 TopList