Исследователи Университета Кэйо (Япония) решили древнюю математическую задачу о существовании прямоугольного и равнобедренного треугольников с одинаковой площадью и периметром. Об этом сообщает новостной портал SoraNews 24.
Согласно выводам Йошиюки Хиракавы (Yoshiyuki Hirakawa) и Хидэки Мацумуры (Hideki Matsumura), существуют рациональный прямоугольный треугольник с гипотенузой, равной 377 сантиметрам (или другим единицам длины), и катетами, равными 352 и 135 сантиметрам соответственно, а также рациональный равнобедренный треугольник со сторонами, равными 366 сантиметрам, и 132-сантиметровым основанием. Периметр и площадь этих уникальных геометрических фигур равны, а других подобных пар не существует.
Исследователи доказали еще одну теорему, согласно которой не существует примитивного прямоугольного и примитивного равнобедренного треугольников, чьи периметр и площадь были бы равны. Примитивным треугольником называется фигура, у которой наибольший общий делитель длин его сторон равен одному.
Ранее 25 сентября издание Science News сообщило, что один из величайших на планете математиков Майкл Атья заявил о доказательстве гипотезы Римана, в настоящее время считающейся одной из семи «проблем тысячелетия».
По информации https://lenta.ru/news/2018/09/25/mathematical/
Обозрение "Terra & Comp".