Во второй половине следующего десятилетия за орбиту Луны отправят научную космическую обсерваторию "Миллиметрон" ("Спектр-М"). В режиме связи с Землей она будет работать как крупнейший виртуальный радиотелескоп, способный исследовать структуру ядер галактик, черных дыр, пульсаров, изучать реликтовое излучение, искать самые ранние следы формирования Вселенной, белые дыры и кротовые норы.
Глаза и уши астрономов
"Рай для радиоастрономов — это обратная сторона Луны", — шутят ученые. Вселенную исследуют с помощью невидимых электромагнитных волн длиной от одной десятой миллиметра, излучаемых большинством космических объектов, в том числе межзвездной средой, черными дырами, пульсарами, квазарами.
Атмосфера Земли поглощает и рассеивает многие радиоволны, оставляя лишь окна для наблюдений. Чтобы уловить больше излучения, обсерватории строят высоко в горах или запускают их на орбиту.
Если два радиотелескопа, расположенных на большом расстоянии друг от друга, направить одновременно на один радиоисточник, к примеру галактику, то благодаря интерференции принимаемый сигнал многократно усилится. Это позволяет в деталях изучить структуру космического объекта.
С помощью такой технологии из разных телескопов можно создать один виртуальный — радиоинтерферометр со сверхдлинной базой. Чувствительность его многократно вырастет за счет удлинения базы — расстояния между телескопами сети. Это возможно, если один из приемников интерферометра находится на орбите.
Именно в таком режиме связи с наземными телескопами действует с 2011 года российская обсерватория "Радиоастрон" ("Спектр-Р"). В апогее она почти достигает орбиты Луны, отдаляясь примерно на 350 тысяч километров. Наблюдая с ее помощью космические радиоисточники, удалось достичь беспрецедентного для астрономии углового разрешения — семи микросекунд.
Российский радиотелескоп "Радиоастрон" помог астрофизикам "уличить" сверхмассивные черные дыры в том, что температура их "плевков" превышает максимально допустимые значения на порядок, что указало на необходимость формулировки новой физики.
Дальше Луны
Следующий шаг — отправить радиотелескоп за Луну, на гало-орбиту в окрестности точки Лагранжа L2, на противосолнечную сторону. Эту задачу призван решить проект "Миллиметрон" ("Спектр-М").
Обсерватория будет работать автономно либо как радиоинтерферометр со сверхдлинной базой, образуя с одним из наземных инструментов (например, в горной обсерватории "Суффа", строящейся в Узбекистане) виртуальный телескоп размером в полтора миллиона километров.
Рекорд "Радиоастрона" по угловому разрешению, с которым можно наблюдать яркие объекты в космосе, будет превзойден в четыре раза, полагает Вячеслав Вдовин, ведущий научный сотрудник Института прикладной физики РАН и ФИАН, доктор физико-математических наук.
"Спектр-М" оборудуют приемной антенной диаметром десять метров и спектрометрами для сбора данных в миллиметровом и субмиллиметровом диапазонах радиоволн.
Чтобы собственное излучение не мешало приему слабого сигнала от космических объектов, антенну охладят до четырех кельвинов. Это почти абсолютный ноль.
Испытали в стратосфере
"Миллиметрон" задуман еще в 1990-е, но в связи со сложностью технических задач, многие из которых приходится решать впервые, реализация замысла не раз откладывалась. По словам Андрея Смирнова, технического руководителя "Миллиметрона", заведующего проектно-комплексной лабораторией отдела космических конструкций Астрокосмического центра ФИАН (АКЦ ФИАН), сейчас защищен эскизный проект на космический комплекс.
Он включен в Федеральную космическую программу до 2025 года и финансируется "Роскосмосом". В разработке участвуют десятки отечественных научно-исследовательских и производственных организаций.
"Далеко не все инструменты и компоненты уже созданы. Работа в этом направлении ведется", — поясняет РИА Новости Смирнов.
В сотрудничестве с Итальянским космическим агентством и Римским университетом ("Ла Сапиенца") изготовлен прототип одного из высокочувствительных бортовых спектрометров — спектрополяриметра среднего разрешения.
"Его испытали этим летом в рамках эксперимента OLIMPO — запустили на воздушном шаре со Шпицбергена и посадили в Канаде. Высота полета — 38 километров, вполне близко к условиям открытого космоса. Эксперимент признан успешным. Аппаратура работала штатно, получены научные данные, которые сейчас обрабатываются", — приводит пример Вдовин.
В успехе проекта он не сомневается.
"Лучший рабочий прототип для "Миллиметрона" — "Радиоастрон". Разработкой руководил тот же научный коллектив — АКЦ ФИАН, диаметр раскладывающейся в космосе антенны — те же десять метров. С другой стороны, у новой обсерватории — более высокий рабочий частотный диапазон, криогенное зеркало и еще масса инноваций", — добавляет ученый.
Смирнов уточняет, что в техническое задание на проект заложены уникальные требования, поэтому некоторые вопросы до конца еще не решены.
Круг научных задач "Миллиметрона" весьма обширный. Это и реликтовое излучение, сохранившееся с момента Большого взрыва, и холодные облака межзвездного газа, и процессы звездообразования, и компактные объекты. Ученые надеются подтвердить существование черной дыры в центре нашей Галактики, найти кротовые норы, позволяющие путешествовать в другие вселенные, и даже выявить следы внеземного разума.
По информации https://ria.ru/20190106/1548561314.html
Обозрение "Terra & Comp".