Японские физики предложили использовать гравитационные детекторы для поиска частиц темной материи. Предполагается, что при столкновениях с гипотетическими частицами зеркала детекторов должны немного отклоняться. По словам ученых, с помощью нового метода можно ужесточить ограничения на сечение рассеяния легких темных частиц, масса которых не превышает одной пятой от массы протона. Препринт работы доступен на сайте arXiv.org.
Когда сквозь Землю проходит гравитационная волна, все ее объекты практически незаметно растягиваются и сжимаются. Например, если волна была испущена при слиянии двух черных дыр с массой порядка нескольких масс Солнца, то относительное изменение длины объектов составит около 10−21. Почувствовать такое растяжение с помощью обычных приборов практически невозможно, однако гравитационные детекторы LIGO и Virgo с этой задачей справляются. Каждый из этих интерферометров чувствует колебания длины плеч, амплитуда которых не превышает одной сотой радиуса протона (порядка 10−18 метра). Поэтому гравитационные детекторы — это одни из самых чувствительных приборов, с которыми когда-либо работали физики.
Чтобы добиться такой высокой чувствительности, физики использовали в гравитационных интерферометрах несколько хитрых инженерных находок. Во-первых, детектор отслеживает колебания зеркал не напрямую, а по изменению интерференционной картины. Во-вторых, в конце каждого плеча интерферометра установлены полупрозрачные зеркала, которые создают внутри установки еще пару интерферометров и увеличивают время курсирования лазерного луча в несколько сотен раз. В-третьих, чтобы снизить влияние квантовых шумов, ученые «сжимают» курсирующий по нему свет. Наконец, чтобы очистить гравитационный сигнал от фоновых шумов, все три установки постоянно сверяются между собой. Более подробно про работу детекторов LIGO/Virgo и хитрости, которые помогают им регистрировать гравитационные волны, можно прочитать в материалах «Тоньше протона» и «Точилка для квантового карандаша».
Группа физиков под руководством Масаки Мори (Masaki Mori) предложила использовать невообразимую чувствительность гравитационных детекторов для поиска частиц темной материи — субстанции, которая обеспечивает около 20 процентов массы Вселенной. В основе нового метода лежит следующая идея. Поскольку Земля движется относительно центра галактики со скоростью около 200 километров в секунду, а гало темной материи в первом приближении неподвижно, нашу планету постоянно продувает ветер из темных частиц. Если сечение взаимодействия этих частиц с частицами обычной материи конечно, то они могут сталкиваться с атомов зеркала, передавать зеркалу импульс и искажать интерференционную картину гравитационного детектора. Следовательно, из сигнала детектора теоретически можно выделить ограничения на частоту таких столкновений, сечение и массу темных частиц.
Чтобы проверить это предположение, ученые теоретически рассмотрели столкновение темной частицы и цилиндрического зеркала. Вообще говоря, такое столкновение может возбудить два принципиально разных типа колебаний. Во-первых, частица подталкивает зеркало и заставляет его качаться (чтобы снизить воздействие вибраций, зеркала гравитационного интерферометра подвешивают на тонких стеклянных нитях). Во-вторых, она заставляет его дрожать, словно желе. Учитывая состав и геометрические параметры зеркал, установленных в разных интерферометрах (LIGO, Virgo, строящегося детектора KAGRA и гипотетического телескопа Эйнштейна), ученые оценили форму сигнала, который возникает после столкновения темной частицы и зеркала. Для обоих типов колебаний сигнал выглядел как довольно резкий пик, расположенный на соответствующей резонансной частоте.
Наконец, используя эти данные, физики рассчитали отношение сигнал/шум и оценили параметры частиц, при которых детекторы что-то почувствуют. Оказалось, что чувствительность нового способа превосходит предыдущие эксперименты для частиц с массой менее 200 мегаэлектронвольт (одна пятая массы протона). Например, при работе с зеркалами гипотетического телескопа Эйнштейна минимальное сечение рассеяния, при котором детектор увидит темные частицы, находится на уровне 10−35m квадратных сантиметров, где m — масса темной частицы в гигаэлектронвольтах.
Хотя за последние двадцать лет ни один детектор темной материи не поймал гипотетические частицы, физики продолжают улучшать существующие экспериментальные установки и разрабатывать новые. Впрочем, фокус этих разработок постепенно смещается в сторону легких частиц темной материи, для которых существующие ограничения пока недостаточно жестки. Только за последний год мы писали о трех многообещающих методиках прямого детектирования легких частиц темной материи. В марте исследователи из США и Израиля предложили ловить гипотетические частицы с помощью тонких сверхпроводящих проводов. В июне та же группа придумала алмазный детектор, который одновременно может отслеживать сразу три типа легких частиц-кандидатов на роль темной материи. А в апреле американские физики разработали так называемую «снежковую камеру» — детектор с переохлажденной водой, которая замерзает, когда сквозь нее пролетает гипотетическая легкая частица. Заметим, что новый эксперимент, предложенный японскими учеными, тоже нацелен на легкие частицы, которые не возникают в популярных теориях темной материи.
С другой стороны, некоторые физики расстроились из-за неудач в поисках темной материи и разработали теории, в которых темные частицы в принципе невозможно поймать. Например, в ноябре 2017 года американский физик-теоретик Хуман Давудиазл предположил, что частицы темной материи отталкивают от Земли за счет неизвестной пятой силы, которая проявляет себя только около больших скоплений обычной материи. А в июле 2018 датские физики показали, что подземные детекторы темной материи могут упустить гипотетические частицы из-за экранирования земной корой.
По информации https://nplus1.ru/news/2019/09/11/WIMPs
Обозрение "Terra & Comp".