Значительная часть светимости вспышки новой V906 Carinae — результат ударных процессов. К такому выводу пришла команда астрономов из 17 стран, включающая российских исследователей, по итогам наблюдений вспышки в нескольких диапазонах. Статья опубликована в Nature Astronomy.
Вспышки классических новых звезд происходят как результат термоядерного взрыва, происходящего на поверхности белого карлика, который входит в состав двойной системы. В течение длительного времени считалось, что основная часть светимости классической новой обусловлена продолжением термоядерного горения на поверхности белого карлика из-за падения на него вещества компаньона. Последние наблюдения гамма-вспышек гигаэлектронвольтовой мощности классической новой V906 Киля, расположенной в направлении знаменитой Туманности Киля, показывают, что внутренние ударные явления, когда плотные массы вещества сталкиваются на большой скорости, могут иметь преобладающее значение в общей светимости новой.
В случае классической новой внешняя оболочка белого карлика с массой от одной тысячной до одной десятимиллионной массы Солнца расширяется со скоростью от 500 до 5000 километров в секунду. В результате происходит кратковременная вспышка, называемая транзиентом, и система увеличивает яркость в тысячи или миллионы раз, достигая, в некоторых случаях, предела видимости невооруженным глазом. После начальной фазы выброса оболочки, остаточные ядерные реакции проходят на поверхности горячего белого карлика и звезда приходит к квазистабильной фазе Эддингтоновского предела светимости для белых карликов.
Кривая оптического блеска гладко спадает от максимума по мере того, как фотосфера опускается и максимум спектральной энергии смещается в синюю область переходя из видимого диапазона в ультрафиолетовый и мягкий рентген. Однако некоторые новые звезды испытывают беспорядочные вспышки с различной периодичностью, длительностью и амплитудой. Такие явления недостаточно хорошо изучены и могут быть объяснены нестабильностью в оболочке или аккреционном диске белого карлика, либо особенностями передаваемых порций масс звезды-компаньона.
Группа исследователей из 17 стран, в том числе из России, провела внеатмосферные наблюдения одновременно в оптическом и гамма-диапазонах новой звезды V906 Киля и проанализировала информацию о нескольких хорошо скоррелированных между собой вспышках в наблюдаемых областях. Во время таких вспышек светимость звезды V906 Киля увеличивалась в два раза — это говорит о том, что источником была ударная волна. Исследователи также обнаружили сопутствующее слабое рентгеновское излучение от глубинных столкновений, которое подтверждает, что энергия ударного столкновения, вырабатываясь изначально в виде жесткого рентгеновского излучения и в результате преобразования через различные механизмы, выделяется в диапазонах более длинных волн. Полученные данные от радио до гамма-диапазонов дают прямое доказательство того, что ударные события — основные источники светимости классических новых и других оптических нестационарных явлений (транзиентов).
Оптический транзиент V906 Carinae (ASASSN-18fv) был открыт и спектроскопическим способом подтвержден в качестве классической новой обзором All-Sky Automated Survey 20 марта 2018 года. До вспышки обзоры Gaia показывали на этом месте объект звездной величины 20,1, а уже 21 марта видимая звездная величина V906 Car составила 7,45. По счастливой случайности объект попал в поле зрения монитора BRIght Target Explorer (BRITE) системы наноспутников и показал беспрецедентную кривую блеска с самого начала взрывного процесса 16 марта 2018 года. Высокое разрешение кривой оптического блеска системой BRITE показало в течение первого месяца от начала взрыва серию из восьми следующих за максимумами вспышек. Каждая из вспышек продолжалась от одного до трех дней и имела амплитуду до 0,8 звездной величины. Как правило, подобные наблюдения, проводимые наземными инструментами, не давали такого разрешения и кривая блеска содержала значительные разрывы и настолько незначительные промежутки времени распознать было практически невозможно.
«Во время пика яркости BRITE-Toronto зарегистрировал восемь коротких световых вспышек, каждая следующая была почти в два раза сильнее предыдущей. Мы видели намеки на эти события и в наземных измерениях, но никогда еще не наблюдали их так ясно. Обычно мы отслеживаем звезды этого класса с Земли с помощью гораздо меньшего количества наблюдений, кроме того, между измерениями часто возникают большие перерывы, и поэтому не удается зафиксировать некоторые быстрые изменения», — приводит слова сотрудника Государственного астрономического института имени Штернберга МГУ Кирилла Соколовского пресс-служба Российского научного фонда.
Наблюдения в гигаэлектронвольтовом гамма-диапазоне объекта V906 Киля начались примерно через 23 дня с момента вспышки с помощью телескопа Large Area Telescope (LAT), установленного на космической гамма-обсерватории Ферми. Гамма-излучение сохранялось до 46-го дня после взрыва. Измеренный поток от объекта позволяет считать V906 Car наиболее мощным гамма-источником из новых звезд.
Исключительная яркость этой новой в гамма-диапазоне позволила получить детальную кривую блеска с несколькими пиками. Сравнивая ее с кривой, полученной на инструменте BRITE, исследователи пришли к выводу, что пики гамма-излучения совпадают по времени со вспышками в оптическом диапазоне. Эта корреляция указывает, что оптическое и гамма-излучение новой порождены процессами одной природы. Вспышки светимости одновременно в обоих диапазонах это результат ударных явлений — то, что происходит в случае взрыва сверхновых IIn типа. Типичная скорость расширения оболочки новой звезды 1000 километров в секунду и время прихода гамма-пиков (около недели после вспышки) указывает на то, что ударный материал имел высокую плотность порядка 1010 грамм на кубический сантиметр. В случае таких плотностей ударная волна переходит в излучение поскольку при скоростях 1000 километров в секунду газ нагревается до температуры десятки миллионов градусов и испускает жесткое рентгеновское излучение. Далее, по причине высокой плотности вещества рентгеновское излучение истощается и переходит в более низкоэнергетические виды: в оптический и инфракрасный диапазоны.
Временная структура и светимость других оптических транзиентов, таких как сверхновые типа IIn или Ia (связанная с взаимодействием с окружающей межзвездной средой) и сверхмощные сверхновые звезды привели авторов к выводу, что подобные события имеют ударную природу — таким образом основная часть болометрической светимости объектов изначально возникает в виде рентгеновского излучения от ударных явлений, которое затем поглощается и излучается вновь в оптическом диапазоне. Подобные же рассуждения проводятся к объяснению светимости красных новых звезд, звездных слияний и явлений приливного разрушения. Таким образом, ударными явлениями можно объяснить большинство транзиентов — краткосрочных явлений на небе вспышечной природы. Однако никогда до этого астрономы не встречали прямых доказательств ударного происхождения основной части болометрической светимости новой звезды.
Наблюдения демонстрируют, что значительная часть светимости проявляющейся в оптическом диапазоне в большой степени поглощенные, энергетические ударные волны взрывных явлений в транзиентах. Наблюдения также показали, что эти же ударные явления могут ускорять заряженные частицы до релятивистских скоростей. Таким образом, сверхновая ударного типа может быть источником космических лучей. Используя современные обзоры, такие как ASAS-SN, Zwicky (Цвикки) Transient Facility (ZTF) и обзор обсерватории Веры Рубин ученые смогут в ближайшем будущем открыть транзиенты с еще большей светимостью. Новые звезды в нашей галактике остаются важными полигонами для проверки физических механизмов протекания экзотических событий в глубоком космосе.
По информации https://nplus1.ru/news/2020/04/14/Nova-Carinae
Обозрение "Terra & Comp".