Происхождение быстрых радиовсплесков — очень ярких электромагнитных импульсов — пока не известно, хотя гипотез множество. В этом году ученые впервые обнаружили такой источник в нашей Галактике. Им оказался магнетар — нейтронная звезда. Поможет ли это открытие разгадать природу феномена, разбиралось РИА Новости.
Ближайший к Земле
В 2007 году американские ученые Дункан Лоример и его аспирант Дэвид Наркевич анализировали архивные записи наблюдений за пульсаром, сделанные радиотелескопом обсерватории Parks. И выявили непонятные пики кратковременной активности, которую вызывают только очень мощные выбросы энергии.
Феномен назвали всплеском Лоримера. Термин "быстрые радиовсплески" (Fast Radio Bursts — FRB) закрепился позже.
"Лоример единственный в мире верил, что это не какая-то помеха, а реальное физическое явление, в целом же к идее относились скептически. Прошло много лет, ученые открыли другие быстрые радиовсплески, и мнение изменилось", — говорит Александр Родин из Пущинской радиоастрономической обсерватории (ПРАО), руководитель проекта по исследованию FRB.
До недавнего времени специалисты фиксировали немногим больше 150 быстрых радиовсплесков, в основном внегалактических. Но в апреле этого года первый такой импульс обнаружили внутри Млечного Пути. В каталоге он значится как FRB 200428.
Сразу несколько научных групп проследили его до объекта SGR 1935+2154 в созвездии Лисичка в 30 тысячах световых лет от нас. Это магнетар, компактная бешено вращающаяся нейтронная звезда с очень сильным магнитным полем и мощнейшими выбросами гамма- и рентгеновского излучения. Исследователи предполагают, что магнетар как раз и есть источник быстрых радиовсплесков, причем периодически повторяющихся. Три статьи, опубликованные в британском журнале Nature, рассказывают о значимости открытия.
Пущинские ученые тоже зафиксировали FRB 200428 от магнетара SGR 1935+2154, о чем 17 ноября выпустили астротелеграмму. Максимальную активность наблюдали в октябре. Открытие сделала Виктория Федорова, младший научный сотрудник ПРАО, проанализировав архивные данные радиотелескопа "Большая сканирующая антенна" на частоте 111 мегагерц.
"По факту, это самый чувствительный в мире радиотелескоп в своем диапазоне, — поясняет Родин. — Обладая таким мощным инструментом, в 2017 году мы запустили собственный проект по поиску FRB".
Всего в Пущино обнаружили 11 быстрых радиовсплесков, еще один ждет подтверждения.
Звучали даже предположения, что это отголоски двигателей инопланетных кораблей. Но сейчас искусственное происхождение FRB всерьез никто не рассматривает.
"Обычно быстрые радиовсплески связывают с выбросами плазмы, которая попадает в конус излучения пульсара и вспыхивает. Допускаю, что причина тому — астероиды, которые пролетают через конусы и там сгорают. В общем, о механизмах говорить рано, надо набрать статистику", — отмечает Александр Родин.
После открытия галактического FRB 200428 основной гипотезой станет рождение быстрых радиовсплесков в атмосфере магнетаров. "Хотя это не отменяет другие версии", — уточняет астрофизик.
Осторожно о возможных механизмах явления высказывается Дмитрий Левков из Института ядерных исследований РАН.
"Гипотеза о магнетарах интересна, но светимость FRB на два порядка выше, чем у самых ярких выбросов этих источников. Откуда гипервспышки, никто не знает. Надо построить модель, которая объясняла бы все наблюдательные данные. Ответов пока нет", — говорит Левков.
В октябре вместе с коллегами он опубликовал на Arxiv.org статью, где описал обнаруженную периодическую структуру у внегалактического FRB 121102. Радиовсплеск приходит со стороны карликовой галактики, расположенной на расстоянии гигапарсека, что уже сравнимо с размером наблюдаемой части Вселенной. Это один из немногих повторяющихся FRB.
"Сигнал поступает на разных частотах сразу. Значит, можно изучить зависимость его интенсивности от частоты, что мы и сделали. Оказалось, есть периодичность — как если бы мы получали сигналы от радиостанций, работающих через каждые сто мегагерц", — объясняет ученый.
Авторы работы полагают, что такая картина типична для явления дифракции — расщепления сигнала на две части, которые огибают препятствие и сливаются вновь (интерферируют). Так происходит со светом в двухщелевом опыте, только сейчас речь о радиоволне.
Вопрос в том, что же расщепило FRB 121102.
"Возможно, черная дыра с массой на четыре порядка меньше солнечной, — рассуждает Левков. — Такие маленькие реликтовые дыры могли образоваться на заре существования Вселенной. Другой вариант — облако плазмы: оно тоже служит линзой, расщепляющей радиоволну на две".
Ученые уверены: их открытие поможет исследовать не только необычные космические объекты, но и распределение материи в галактиках. Однако для подтверждения необходимо получить данные других научных групп.
По информации https://ria.ru/20201121/radiovspleski-1585468650.html
Обозрение "Terra & Comp".