Предприятие госкорпорации «Росатом» Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций (ВНИИАЭС) вместе с Национальным исследовательским ядерным университетом МИФИ начинают изучать возможности создания технологии мюонной томографии ядерных реакторов — метода непрерывной дистанционной диагностики. Этот метод в свое время был применен для «просвечивания» египетских пирамид, а в атомной отрасли — для изучения «внутренностей» аварийных энергоблоков на японской АЭС «Фукусима-1».
Каждую секунду в верхних слоях атмосферы образуются миллионы мюонов — заряженных частиц, возникающих в результате столкновения космических лучей с ядрами атомов. Ежеминутно квадратную площадку со стороной один сантиметр, лежащую на поверхности Земли, пересекает один мюон космического происхождения. Мюоны попадают на Землю с разных сторон, под разными углами и с разными энергиями. Это делает их бесплатным природным инструментом для томографии — метода, позволяющего реконструировать послойную структуру того или иного объекта посредством его многократного просвечивания в пересекающихся направлениях.
Поток мюонов при прохождении через слои вещества разной плотности будет изменяться и благодаря этому давать пространственную картину изучаемого объекта. Поэтому метод мюонной томографии схож с рентгеновской диагностикой.
В целом за прошедшие десятилетия накоплен богатый опыт применения космических мюонов для изучения археологических и геологических объектов (в частности, извержения вулкана), отмечены перспективы контроля строительных сооружений.
В атомной сфере в начале 2000-х годов было предложено использовать мюонную томографию для контроля за несанкционированным перемещением ядерных материалов. Важное практическое применение в атомной энергетике мюонная томография нашла при изучении состояния аварийных энергоблоков японской АЭС «Фукусима-1», где удалось определить положение расплавленного ядерного топлива, что важно с точки зрения проведения работ по ликвидации последствий аварии 2011 года.
В российском проекте «Мюонная томография ядерных реакторов» предлагается использовать разработанный в МИФИ метод мюонной диагностики различных объектов с помощью мобильных, не имеющих аналогов так называемых широкоапертурных многослойных прецизионных мюонных годоскопов — приборов, позволяющих в режиме реального времени получать общую картину распределения вещества в изучаемом объекте и динамику его возможного изменения, что особенно важно в случае аварий на ядерных реакторах.
Предполагается разработка и создание опытного образца такого годоскопа, а также автоматизированного комплекса обработки информации и их экспериментальная отработка в реальных условиях действующей АЭС.
Наиболее известным приложением метода мюонной томографии стало изучение внутренних полостей египетских пирамид. В сентябре 2015 года ученые при поддержке египетского министерства археологии начали работу по программе Scan Pyramids. Для исследования были выбраны Ломаная пирамида и пирамида Хеопса (Великая). Мюоны регистрировались с помощью эмульсионных пластинок, разработанных и изготовленных в Университете города Нагоя (Япония). Такой способ регистрации был выбран потому, что он дает очень высокую точность определения мюонных треков, а также потому, что пластинке, лежащей на полу в камере пирамиды, не нужны ни питание, ни громоздкое оборудование.
Каждая пластинка имеет толщину около 300 микрометров. Этого достаточно, чтобы различить трехмерный мюонный трек в толще эмульсии и определить направление его прилета с точностью порядка угловой минуты. Такими пластинками застилается пол в одной из камер пирамиды, и затем они экспонируются несколько десятков дней. Пластинки защищены слоем алюминия, который предохраняет их от засветки.
Проект Scan Pyramids начал работу в Ломаной пирамиде в декабре 2015 года. Ломаная пирамида, находящаяся в Дахшуре, отличается от классических пирамид Гизы своей неправильной формой. Главной задачей этого первого исследования было подтверждение работоспособности метода.
Полная площадь установленных пластинок составила три квадратных метра. Они экспонировались в течение сорока суток. Никаких скрытых камер обнаружено не было. Тем не менее это стало первым обнаружением уже известного помещения в пирамиде методом мюонной томографии и замечательным подтверждением работоспособности метода.
Второй на очереди для Scan Pyramids была Великая пирамида в Гизе. Исследования здесь начались в июне 2016 года. Для расположения детекторов первоначально был выбран отрезок спускающегося коридора. Это узкий проход шириной 1–1,2 метра, наклоненный под углом 26 градусов к горизонту, и здесь снова пригодился компактный размер эмульсионных пластинок: никакой другой детектор в этом месте не поместился бы.
Пластинки экспонировались в течение 67 дней. После их проявки обнаружилась аномалия: увеличение потока в определенном направлении. Это значит, что мюоны, прилетевшие с этого направления, прошли меньшую толщину камня. Значит, там находится пустота — какая-то неизвестная ранее камера.
Чтобы лучше исследовать эту аномалию, физики расставили эмульсионные пластинки в разных местах коридора, а также в так называемой Камере царицы — одной из трех камер внутри пирамиды Хеопса. В последнем исследовании, проведенном из Камеры царицы и из коридора, отходящего от нее вбок, общая площадь установленных пластинок составила восемь квадратных метров, и они экспонировались в несколько подходов, каждый длился около двух месяцев. Установка пластинок сразу в двух местах, расстояние между которыми составляло 10 метров, позволила получить стереоскопическое изображение потока мюонов и с большой точностью локализовать пустоту.
Историки давно спорили о том, что, возможно, в пирамиде Хеопса существуют еще не открытые помещения. Наконец-то можно дать уверенный ответ: такое помещение действительно есть. Увеличение потока мюонов в направлении этой новой полости примерно такое же, как и в направлении на большую галерею, то есть эти помещения имеют примерно одинаковый размер.
После открытия с эмульсионными пластинками существование пустоты было подтверждено с помощью сцинтилляторных детекторов, размещенных всё в той же Камере царицы, и с помощью газовых детекторов, расположенных снаружи пирамиды. Во всех случаях принцип один и тот же: чем большую толщу камня проходит поток мюонов от космических лучей, тем меньше их долетает до детектора. Таким образом измеряется полная толщина камня. Измерение с разных точек позволяет идентифицировать обнаруженные пустоты с большой точностью.
Итак, новая скрытая камера находится над большой галереей, ведущей в Камеру фараона. Ее длина составляет не меньше 30 метров, а высота — около 15 метров. Пока неясно, для чего была сделана эта камера. Ученые еще даже не понимают, как туда попасть: из известных ходов пирамиды туда не ведет ни один. Но это, безусловно, уже большое открытие. Все известные до сих пор камеры Великой пирамиды были открыты еще в Средневековье багдадским халифом аль-Мамуном.
Возможно ли, что скрытая камера является единственной дошедшей до нас в нетронутом виде сокровищницей Хеопса (хотя считается, что это маловероятно)? Или это технологическое помещение, которое зачем-то понадобилось при постройке? Бурить пирамиду, чтобы узнать ответ, команда Scan Pyramids пока не решается. Сначала планируется провести еще серию исследований, чтобы точнее определить координаты обнаруженной пустоты. Затем, если небольшое отверстие все же пробурят, таинственное помещение можно будет исследовать с помощью робота.
Теперь на очереди применение метода мюонной томографии для мониторинга самочувствия атомных электростанций.
По информации https://stimul.online/news/rosatom-prosvetit-reaktory-aes-kosmicheskimi-luchami/
Обозрение "Terra & Comp".